Home / Sonnenaktivität / Schwaches Polarlicht in Nord-West-Deutschland

Schwaches Polarlicht in Nord-West-Deutschland

Polarlicht-Nacht in Deutschland (12.-13.05.2015)

Polarlicht in Lüneburg. Foto: Jonas Prey
Polarlicht in Lüneburg. Foto: Jonas Prey

In der vergangenen Nacht konnte man im Nord-Westen von Deutschland fotografisches und schwach visuelles Polarlicht beobachten. Auslöser war ein verstärkter Sonnenwind, sowie ein koronaler Massenauswurf der auf das Erdmagnetfeld traf und so einen geomagnetischen Sturm verursachte. Dieser Sturm verstärkte sich in der zweiten Nachthälfte zu einem mäßig starken Magnetsturm der Kategorie G2 (-Bild-) Weitere Bilder findet ihr auf Spaceweather.com sowie auf Polarlicht-archiv.de

Gegen Vormittag sprang die Sonnenwindgeschwindigkeit auf knapp 700km/s an. Wenn sich diese Störungen bis zum Abend fortsetzen, dann erwartet uns eine erneute und evt. sogar ausgeprägtere Polarlicht-Nacht in Deutschland. Eine exakte Vorhersage ist aufgrund der Komplexität der Zusammenhänge leider nicht möglich, wir werden aber die aktuelle Lage weiter beobachten und euch rechtzeitig bei möglichem Polarlicht warnen.

Karte der Polarlicht Sichtungen
Karte der Polarlicht Sichtungen

 

Was ist ein Sonnensturm und welche Auswirkungen hat er?

Die Sonne sendet ständig Strahlung und geladene Teilchen in den Weltraum. Diesen stetigen Teilchenstrom bezeichnet man als Sonnenwind.

Die Plasmawolke, die bei einer Sonneneruption ins All entweicht, bezeichnen Wissenschaftler als koronalen Massenauswurf (englisch: coronal mass ejection; Abkürzung: CME oder KMA). Er besteht aus geladenen Teilchen: Elektronen, Protonen und weiteren Atomkernen. Die Plasmawolke bewegt sich mit Geschwindigkeiten von etwa 1000 Kilometern pro Sekunde durchs All und benötigt somit etwa ein bis zwei Tage, bevor es die Erde erreicht. Die Plasmawolke ist für viele der Auswirkungen, die bei einem Sonnensturm auf der Erde beobachtet werden können, verantwortlich. Die Strahlung und die Teilchen, die bei einer Sonneneruption entstehen, bewegen sich durchs All und können auch auf die Erde treffen. Die Folgephänomene, die dort in Gang gesetzt werden, bezeichnet man als Sonnensturm.

Welche Auswirkungen können Sonnenstürme auf der Erde haben?

Die Erde ist weitestgehend durch ihre Atmosphäre und ihr Magnetfeld vor Sonnenstürmen geschützt. Dieses führt eintreffende, geladene Teilchen in einem Abstand von etwa zehn Erdradien (70 000 Kilometern) um die Erde herum. Zusätzlich schirmt die Atmosphäre die Erdoberfläche ab. In großen Höhen und in den Polargebieten, wo die Feldlinien des Magnetfeldes stärker gegen die Erdoberfläche geneigt sind, ist dieser Schutz schwächer. Diese Regionen sind deshalb anfälliger für die Auswirkungen von Sonnenstürmen.

Polarlichter: Trifft die Plasmawolke auf das irdische Magnetfeld, wird dieses verformt. Dadurch werden elektrische Spannungen in der Atmosphäre induziert. Zudem werden die elektrisch geladenen Teilchen in der Magnetosphäre (dem Gebiet, das durch das Erdmagnetfeld geprägt wird) beschleunigt und können parallel zu den Feldlinien des Erdmagnetfeldes tiefer in die Erdatmosphäre eindringen. Dort stoßen sie auf das dichtere Atmosphärengas und regen – wie in einer Leuchtstoffröhre – einzelne Gasteilchen zum Leuchten an. Diese Leuchterscheinungen treten überwiegend in den Polargebieten auf. Starke Sonnenstürme können das Erdmagnetfeld jedoch so stark verformen, dass diese Prozesse auch in niedrigeren Breiten vorkommen und Polarlichter auch in Deutschland sichtbar werden.

Auswirkungen auf den Flugverkehr: Auch in einer typischen Reiseflughöhe von elf Kilometern sind Flugreisende weitestgehend durch das Magnetfeld der Erde vor einer deutlich erhöhten Strahlungsdosis geschützt. Da dieser Schutz in den Polarregionen schwächer ist und möglicherweise auch die Navigation beeinträchtigt ist, kann es sinnvoll sein, bei starken Sonnenstürmen Polarrouten vorsichtshalber zu meiden.

Auswirkungen auf Stromnetze: Auch in der Nähe des Erdbodens kann das Verformen des irdischen Magnetfeldes elektrische Feldstärken von mehreren Volt pro Kilometer induzieren. Zwar sind die Feldstärken deutlich geringer als solche, die etwa lokal bei einem Blitz auftreten. Da Stromleitungen zuweilen weite Strecken überbrücken, können sich in ihnen dadurch hohe Spannungen aufbauen und starke Ströme fließen. Diese können beispielsweise Transformatoren zerstören. Durch Folgefehler können weitere Teile des Stromnetzes ausfallen. Solche Effekte treten vor allem in hohen Breiten auf.

Auswirkungen auf Handynetze: Die Richtfunkstrecken der Handynetze sind kaum betroffen.

Auswirkungen auf Satelliten: Vor allem die hochenergetischen Teilchen eines Sonnensturms können die Funktionstüchtigkeit von Satelliten beeinträchtigen. Zum einen können die Teilchen die Sternensensoren blenden. Diese Sensoren machen bestimmte Sternbilder am Himmel aus und erlauben es dem Satelliten, sich gezielt auszurichten. Zum anderen können die Teilchen freie Ladungen in elektronischen Bauteilen des Bordcomputers erzeugen, so dass es zu Abstürzen der Software kommen kann. Dies lässt sich jedoch durch Ab- und Wiedereinschalten des Computers beheben. Die Solarzellen, welche den Satelliten mit Strom versorgen, und andere elektronische Bauteile können dauerhaft geschädigt werden. Die Solarzellen der Raumsonde SoHO der amerikanischen und europäischen Weltraumagenturen NASA und ESA etwa haben seit ihrem Start im Jahre 1995 durch Sonnenstürme etwa 25 Prozent ihrer Leistung eingebüßt. Zudem heizt die energiereiche Strahlung die äußersten Schichten der Erdatmosphäre auf. Als Folge dehnt sie sich aus – zum Teil bis zu den Umlaufbahnen einiger Satelliten. Diese werden durch den Wiedereintritt in die Atmosphäre abgebremst. Damit sie nicht abstürzen, muss gegengesteuert werden.

Auswirkungen auf Astronauten: Astronauten sind außerhalb der Erdatmosphäre und des Erdmagnetfeldes nicht vor den Auswirkungen eines Sonnensturms geschützt. Bei starken Sonnenstürmen ist die Strahlungsdosis selbst im Inneren einer Raumsonde hoch; bei Weltraumspaziergängen kann sie lebensgefährlich sein. Besonders bei möglichen, zukünftigen bemannten Weltraummissionen zum Mond oder zum Mars stellen Sonnenstürme eine ernste Gefahr dar.

Abbildung 2: Während eines Weltraumspaziergangs sind Astronauten nicht ausreichend vor der hohen Strahlungsdosis, die bei einem starken Sonnensturm auftreten kann, geschützt.
(Foto: NASA)

Auswirkungen auf das GPS: Besonders in höheren Breiten bewirken Sonnenstürme, dass die Erdatmosphäre in etwa 100 bis 150 Kilometern Höhe stärker als sonst ionisiert wird. Die Kommunikationssignale der GPS-Satelliten, die auf ihrem Weg zu unseren GPS-Geräten diese Schicht durchqueren müssen, werden dadurch geringfügig verzögert. Da die GPS-Geräte ihren Standort aus der Laufzeit dieses Signals ermitteln, kann es zu Fehlberechnungen kommen.

 

 

Über Dominik

Mein Name ist Dominik, ich bin 28 Jahre alt und Gründer des Weblogs "Sonnen-Sturm.info". Die Astronomie sowie die Beobachtung der Sonnenaktivität ist ein langjähriges Hobby von mir. Mit diesem Weblog möchte ich euch an meinem Hobby teilhaben lassen und hoffe so, einige für die Astronomie begeistern zu können!

Dies könnte Sie auch Interessieren

G1 Magnetsturm

Update zum Magnetsturm am Wochenende – 20.05.2017

20.Mai 2017 – Magnetsturm der Klasse G1  – 07:15 Uhr –  Der Sonnenwind hat die …

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.